

SANDIA REPORT

SAND2004-8055
Unlimited Release
Printed February 2004

Revisiting
Asynchronous Parallel Pattern Search
for Nonlinear Optimization

Tamara G. Kolda

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2004-8055
Unlimited Release

Printed February 2004

Revisiting Asynchronous Parallel Pattern Search
for Nonlinear Optimization

Tamara G. Kolda∗

Computational Sciences and Mathematics Research Department
Sandia National Laboratories
Livermore, CA 94551–9217

ABSTRACT

We present a new asynchronous parallel pattern search (APPS) method which is
different from that developed previously by Hough, Kolda, and Torczon. APPS ef-
ficiently uses parallel and distributed computing platforms to solve science and en-
gineering design optimization problems where derivatives are unavailable and cannot
be approximated. The original APPS was designed to be fault-tolerant as well as
asynchronous and was based on a peer-to-peer design. Each process was in charge of
a single, fixed search direction. Our new version is based instead on a manager-worker
paradigm. Though less fault-tolerant, the resulting algorithm is more flexible in its
use of distributed computing resources. We further describe how to incorporate a
zero-order sufficient decrease condition and handle bound constraints. Convergence
theory for all situations (unconstrained and bound constrained as well as simple and
sufficient decrease) is developed. We close with a discussion of how the new APPS
will better facilitate the future incorporation of linear and nonlinear constraints.

Keywords: asynchronous parallel optimization, pattern search, direct search, dis-
tributed computing, generating set search.

∗Email: tgkolda@sandia.gov. This work was supported by the Mathematical, Information,
and Computational Sciences Program of the U.S. Department of Energy, under contract DE-AC04-
94AL85000 with Sandia Corporation.

3

This page intentionally left blank.

4

1. Introduction. Asynchronous parallel pattern search (APPS) is a variation
on parallel pattern search that uses parallel resources more efficiently by eliminating
synchronization [8]. Pattern search methods [17, 21, 16, 14] and, more generally,
generating set search (GSS) methods [10, 11] are geared toward solving science and
engineering optimization problems that lack derivative information. These problems
are typically characterized by objective functions based on complex and expensive
computer simulations. GSS methods are provably convergent to a stationary point
if the underlying objective function is suitably smooth; further, GSS methods often
“work well” in practice (with some theoretical justification; see, e.g., [1]) even on
non-smooth problems.

The original APPS algorithm is described in [8], and analysis follows in [12, 13].
The motivation for an asynchronous version of parallel pattern search has not changed
from that described in [8]:

A single synchronization step at the end of every iteration. . . is nei-
ther appropriate nor effective when any of the following factors holds:
function evaluations finish in varying amounts of time (even on equiv-
alent processors), the processors employed in the computation possess
different performance characteristics, or the processors have varying
loads.

However, another driving motivation for the original APPS was the need for a method
that was tolerant to various types of failures that might cause synchronous parallel
pattern search to completely fail or be extremely slow to converge. To facilitate fault-
tolerance, the original APPS algorithm was based on a peer-to-peer model and used
PVM [7] as the communication architecture. The new APPS is based instead on
a manager-worker paradigm, sacrificing some fault-tolerance in exchange for greater
simplicity and flexibility. Further, the new version is based on MPI [20], which many
users seem to prefer to PVM. (Is should be noted that some fault-tolerant versions of
MPI do exist [4] but such functionality is still rare.)

The sacrifices in terms of fault-tolerance are minimal since checkpointing to disk
in the manager-worker version can be used in lieu of a peer-to-peer design. The
checkpoint data is small, consisting of only the current best point and correspond-
ing function value. The primary difference between peer-to-peer and checkpointing
manager-worker implementations is that the checkpoint version requires some mech-
anism for restarting (either manual or automated) after a failure, whereas the peer-
to-peer continues without any intervention.

In the original APPS, there were multiple agents (i.e., the peers), each of which
owned part of the logic of the search. These agents had to correspond with one
another regarding algorithmic events (new best, single direction convergence, and
overall convergence), not to mention different types of faults; see [8] for more details.
With a single manager process controlling all the logic of the search, these complexities
are eliminated. Since the number of worker processes is typically very small (1-100
workers) and each communicates infrequently and asynchronously with the manager,
it is unlikely that there will be any sort of communication bottleneck at the manager
process.

While presenting the new APPS, we present additional modifications for a zero-
order sufficient decrease condition and for bound constraints. The adaptation of a
zero-order sufficient decrease condition to pattern search has been discussed in several
contexts [10, 19], including a different take on peer-to-peer asynchronous parallel
pattern search [6]. In particular, the generalization of pattern search to GSS in [10]

5

was motivated by the desire to incorporate generic globalization strategies, including
sufficient decrease, into the framework. The use of a sufficient decrease condition
yields greater flexibility in the selection of search directions at each iteration. Handling
bound constraints for pattern search has also be the subject of several papers [15, 18,
10]. Some problematic numerical results in the original APPS paper [8, Table 5.6] are
the result of not appropriately handling the bound constraints.

The organization of this paper is as follows. In §2, we review the parallel pattern
search algorithm and variants that can be used for sufficient decrease and/or bound
constraints; known convergence results are summarized in §2.4. The new APPS al-
gorithm is presented in §3, along with its own corresponding variants. An illustrative
example of the new APPS algorithm is presented in §4. Convergence theory follows in
§5. We conclude with commentary on the algorithm and associated theory, pointers
to its implementation and some numerical results, and ideas for future work in §6.
For those familiar with the original APPS, a discussion of the evolution from the old
APPS to this one is discussed in Appendix A.

For the purposes of this text, we consider both the unconstrained and bound-
constrained nonlinear optimizations problems. The unconstrained problem is given
by

min f(x).(1.1)

Here f : Rn → R and x ∈ Rn. The bound constrained problem is given by

min f(x)
subject to ` ≤ x ≤ u.

(1.2)

The function f is the same as for the unconstrained problem. The upper and/or lower
bounds are optional on an element-by-element basis; specifically, ` is an n-vector with
entries in R∪{−∞} and u is an n-vector with entries in R∪{+∞}. The set Ω denotes
the feasible region; i.e.,

Ω = {x : ` ≤ x ≤ u}.

The unconstrained problem can be thought of as a special case of the bound con-
strained problem. In other words, Ω = Rn in the unconstrained problem.

2. Review of Parallel Pattern Search. We briefly review parallel pattern
search (PPS) with simple decrease and its extensions for sufficient decrease and bound
constraints. We refer throughout to pattern search though it might be more accurate
to refer to GSS; recall that the generalization of pattern search to GSS was motivated
by the desire to bring in different globalization strategies, including sufficient decrease
[10]. We conclude by presenting unified convergence results. This review lays the
groundwork for the description of the asynchronous methods.

The generic algorithm is presented in Figure 2.1, and the notation used is as
follows. Subscripts denote the iteration index. The vector xk ∈ Rn denotes the best
point (i.e., the point with the smallest known function value) at the beginning of
iteration k. The set

Dk =
{

d
(1)
k , . . . , d

(pk)
k

}
,

denotes the set of search directions at iteration k, and the number of search directions
in Dk is denoted by pk. Superscripts denote the direction index, which ranges between

6

1 and pk at iteration k. The value ∆k denotes the step length at iteration k, and the
values ∆̃(i)

k ∈ [0,∆k], for i = 1, . . . , pk, denote the corresponding pseudo step lengths.
The function ρ(·) denotes the forcing function.

Initialization.

Let ∆tol > 0 be the step length convergence tolerance.
Set x0 to be some initial guess.

Set D0 =
{

d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Set ∆0 > ∆tol to be the initial value of the step length.

Iteration. For k = 0, 1, . . .

Step 1. Generate a set of trial points corresponding to the search
directions; i.e.,

Xk =
{

xk + ∆̃(i)
k d

(i)
k : 1 ≤ i ≤ pk and ∆̃(i)

k ≥ ∆tol

}
Send all points in Xk to the evaluation queue.

Step 2. Wait until all trial points in in the evaluation queue have been
evaluated. Collect those points in the set Yk.

Step 3. If there exists a trial point in yk ∈ Yk such that
f(yk) < f(xk)− ρ(∆k), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful:

– Set xk+1 = yk.

– Choose a new Dk+1 =
{

d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Set ∆k+1 = ∆k.

– Go to Step 1.

Step 5. The iteration is unsuccessful:

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Set ∆k+1 = 1
2∆k

– If ∆k+1 < ∆tol, terminate; else, goto Step 1.

Fig. 2.1. PPS algorithm

In Step 1 of Figure 2.1, a set of trial points is generated, denoted by Xk. The
method for choosing the pseudo step lengths is discussed in detail in the subsections
that follow. In general, ∆̃(i)

k = ∆k unless constraints are involved.
In Step 2 of Figure 2.1, the trial points are evaluated, and the results are collected

in Yk. For PPS, Yk = Xk for all k; however, this will not be the case for the
asynchronous version in §3. Step 2 is where parallelism may be employed, in which

7

case the pk function evaluations are executed in parallel. The algorithm does not
go on to the next step until all evaluations have completed, so this is the point of
synchronization. Furthermore, this is typically the most computationally expensive
step because pk function evaluations must be computed.

In Step 3 of Figure 2.1, the decrease condition is evaluated. The choice of the
function ρ(·) is discussed in detail in §2.1 and §2.2. If the decrease condition is
satisfied, then the iteration is termed successful ; otherwise, it is unsuccessful.

As an aside, we make the following remark. If multiple points in Yk produce
decrease, any one can be chosen as yk without impacting the convergence theory in
§2.4. However, from a practical perspective, a point that yields the smallest function
value should be selected.

The algorithm executes Step 4 of Figure 2.1 if the iteration is successful. The
next iterate xk+1 is updated to be the trial point that produced decrease in the
function, yk. A new set of search directions may also be selected at this point. The
search directions must be chosen in a particular way in order to guarantee that the
algorithm will converge. The criteria are detailed in the subsections that follow. For
simplicity, a choice that always works is the set of plus and minus unit vectors, i.e.,
Dk = {±e1,±e2, . . . ,±en} and pk = 2n for k = 1, 2,

The algorithm executes Step 5 of Figure 2.1 if the iteration is unsuccessful. In
this case, the step length ∆k is reduced by a factor of two. Termination of the method
is controlled by the step length.

2.1. PPS with Simple Decrease. Let us consider PPS with simple decrease
for the unconstrained optimization problem (1.1). The term simple decrease means
that only f(yk) < f(xk) is required in Step 2. In other words, the function ρ(·) is
assumed to be identically zero.

Below, we describe the four conditions that specialize the algorithm in Figure 2.1
to be PPS with simple decrease (in the unconstrained case).

The first two conditions have to do with the selection of the search directions, Dk.
It is useful to decompose the set of search directions as Dk = Gk ∪Hk. The set Gk is
the core set of search directions (the poll set), while the set Hk is a possibly empty
set of additional search directions (the search set) [3, 10].

Condition 1 requires that the cosine measure of the subset Gk be uniformly
bounded; see [10] for a discussion of cosine measure.

Condition 1. Every Gk positively spans Rn. Furthermore, there exists a
constant cmin > 0, both independent of k, such that κ(Gk) ≥ cmin for all k,
where

κ(Gk) ≡ min
v∈Rn

max
d∈Gk

vT d

‖ v ‖ ‖ d ‖
.

Condition 2 requires that the search directions in Gk be uniformly bounded in
length.

Condition 2. There exist βmin > 0 and βmax > 0, independent of k, such
that for all k the following holds:

βmin ≤ ‖ d ‖ ≤ βmax, for all d ∈ Gk.

8

Parts (a)–(c) of Condition 3 set more specific conditions for selecting the search
directions; these conditions are important in the simple decrease case. Essentially, all
search directions must be derived from a fixed, finite set G. Part (c) explains how Hk

may be formed. Condition 3 also requires that the forcing function is identically zero
in part (d) and that the pseudo step lengths are chosen appropriately in part (e).

Condition 3. (Rational Lattice)
(a) There exists a finite set G = {d(1), . . . , d(p)} such that every vector

d(i) ∈ G is of the form d(i) = Bc(i) where B ∈ Rn×n is a nonsingular
matrix and c(i) ∈ Qn.

(b) All search directions in Gk are chosen from G; i.e., Gk ⊆ G for all k.
(c) All search directions in Hk are integer combinations of the elements of

G;. i.e., Hk ⊂
{∑p

i=0 ξ(i)d(i) | ξ(i) ∈ {0, 1, 2, . . .}
}

for all k.
(d) The forcing function is identically zero, i.e., ρ(t) ≡ 0.
(e) All pseudo step lengths ∆̃(i)

k ∈ [0,∆k] satisfy either ∆̃(i)
k = 0 or

∆̃(i)
k = ∆k.

Conditions 1–3 are not difficult to satisfy; consider, for example,

Dk = {±e1,±e2, . . . ,±en} for all k.

Since we are only considering the unconstrained problem in this subsection, we
further assume that the pseudo step lengths are always equal to the step length, i.e.,

∆̃(i)
k = ∆k for i = 1, . . . , pk, k = 1, 2, . . .

This is formalized in the discussion of bound constraints as Condition 6.

2.2. PPS with Sufficient Decrease. Let us consider PPS with sufficient de-
crease for the unconstrained optimization problem (1.1). In this case, ρ(·) is a non-zero
function, in contrast to the simple decrease case.

There are four conditions that specialize the algorithm in Figure 2.1 to be PPS
with sufficient decrease (in the unconstrained case). As before, Conditions 1, 2, and
6 are imposed. Condition 3 is replaced instead by the following.

Condition 4. (Forcing Function)
(a) The function ρ(t) is a nonnegative continuous function on t ∈ [0,+∞).
(b) The function ρ(t)/t monotonically decreases to zero as t ↓ 0.

A common choice that satisfies Condition 4 is

ρ(∆) = α∆2,

where α is some fixed, positive constant. For a complete discussion of forcing functions
for GSS, see [10] and references therein.

2.3. PPS with Bound Constraints. Let us consider PPS for the bound con-
strained optimization problem (1.2). Adapting PPS for bound constraints affects the
choice of search directions and the choice of the pseudo step lengths. The adaptation
is largely independent of the choice of simple or sufficient decrease, except for the
particulars of choosing the pseudo step lengths.

9

Three conditions specialize the algorithm in Figure 2.1 to be PPS with bound
constraints.

In the bound constrained case, the search directions must “conform” to the ge-
ometry of the nearby boundary, so Condition 5 requires that Gk be the coordinate
search directions [15]. Condition 5 replaces Condition 1 and Condition 2 since these
conditions are trivially satisfied by this choice of Gk. More general selection criteria
may be employed; see the requirements on choosing search directions for general linear
constraints in [10, 11].

Condition 5. For all k, we have Gk = {±e1, . . . ,±en}.

The second condition is either Condition 3 or Condition 4, depending on the
choice of simple or sufficient decrease.

The final condition is the one we have already referred to, having to do with the
choice for pseudo step lengths. Special choices for these values are required in the
case of bound constraints. There are several ways that ∆̃(i)

k can be chosen so long as
Condition 6, which states that the full step is used if possible, is satisfied.

Condition 6. If xk + ∆kd
(i)
k ∈ Ω, then ∆̃(i)

k = ∆k.

Three possible strategies for choosing admissible values for ∆̃(i)
k are described in [11]

for the case of general linear constraints; we present two here. The simplest choice is
the following.

∆̃(i)
k =

{
∆k if xk + ∆kd

(i)
k ∈ Ω,

0 otherwise.
(2.1)

A more sophisticated choice may be employed in the sufficient decrease case:
taking the longest possible feasible step. Define ∆̃(i)

k as the solution to

max ∆̃
subject to 0 ≤ ∆̃ ≤ ∆k,

xk + ∆̃ d
(i)
k ∈ Ω.

(2.2)

2.4. PPS Convergence Theory. Before discussing convergence theory, we
present some useful definitions and assumptions.

In any practical situation, ∆tol > 0. However, for the purposes of studying the
asymptotic behavior of the algorithm, ∆tol = 0.

The following assumptions on the function are employed later theorems.

Assumption 1. The set Lf (x0) = {x ∈ Ω : f(x) ≤ f(x0)} is bounded.

Assumption 2. The function f is bounded below on Ω.

Assumption 3. The function f is continuously differentiable on Lf (x0).

10

Assumption 4. The gradient ∇f is Lipschitz continuous with constant M
on Lf (x0).

In constrained optimization, we can measure progress to a KKT point using the
following analogue of ‖∇f(x) ‖. For x ∈ Ω, define

χ(x) = max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w.

The function χ is particularly suitable for the analysis of pattern search (and GSS)
methods [10, 11]. It has the following three properties [2]: χ(x) is continuous, χ(x) ≥
0, and χ(x) = 0 if and only if x is a KKT point. Note that χ(x) ≡ ‖∇f(x) ‖ if
Ω = Rn.

Now that the assumptions and notation have been established, we can present
the convergence results for PPS.

Theorem 2.1 ([10] and references therein). Consider the optimization prob-
lem (1.1), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions 1, 2, either 3 or 4, and 6. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 2.2 ([10, 11] and references therein). Consider the optimization prob-
lem (1.2), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions either 3 or 4, 5, and 6. Then

lim inf
k→+∞

χ(xk) = 0.

3. APPS. The premise of APPS is that greater efficiency in parallel processor
utilization will enable faster solution of many problems. The original peer-to-peer
version has indeed demonstrated faster execution times [8]. Here we present a new
manager-worker design; a comparison between the manager-worker and peer-to-peer
approaches is presented in Appendix A.

As mentioned in §2, the synchronization point in pattern search occurs in Step 2
of Figure 2.1, where the algorithm is required to wait until the evaluation of every
trial point is complete before continuing. The difference between the synchronous and
asynchronous version is that the asynchronous version need not wait until all function
evaluations complete before moving on to the decision step (Step 3). Instead, the
points with incomplete function evaluations are stored in a queue, and the algorithm
moves ahead based on the best information available to it.

The flexibility of APPS necessitates a small amount of additional bookkeeping,
as observed in [8]. Each trial point must “remember” how it was generated; more
specifically, a trial point generated at iteration k using direction i stores the following
additional information:

1. its parent xk,
2. its parent’s function value f(xk),
3. its direction index i, and
4. its step length ∆(i)

k (defined below).
11

It is not necessary that the actual parent be stored; instead, a unique identifier is
sufficient. In terms of implementation, the additional storage is negligible.

The manager-worker APPS algorithm, presented in in Figure 3.1, has the same
structure as PPS in Figure 2.1. We discuss the major differences.

The notation is the same as for PPS, with the following exceptions and additions.
There is no longer a single step length ∆k at step k; instead, there is a step length
associated with each direction, denoted by ∆(i)

k . As before, we assume that ∆̃(i)
k = ∆(i)

k

in the unconstrained case. We introduce a minimum step length, ∆min, defined by
the integer Γmin. There is an evaluation queue which may not be completely emptied
in each iteration. Correspondingly, we introduce the set Ak containing the indices of
the search directions that, at the start of iteration k, are “active”; in other words,
those directions that have an associated trial point in the evaluation queue. Further,
we define qmax to be the maximum number of points the queue holds.

In Step 1 of Figure 3.1, the trial points are generated. The selection criteria for
generating new trial points has changed slightly and now takes into account whether
or not a given search direction is “active”. The set Ak+1 is set during this step, and
it may be reset or modified in Step 4 or Step 5.

In Step 2 of Figure 3.1, a set of evaluated trial points, denoted Yk, is collected.
In contrast to Step 2 of Figure 2.1, this step does not wait until all trial points have
been evaluated before moving on. Thus, it may be the case that Yk 6= Xk and further
that Yk 6⊆ Xk.

Step 3 of Figure 3.1 now selects a subset of the trial points to consider for a simple
decrease comparison with respect to the current best point. The subset includes those
points that satisfy a sufficient decrease condition with respect to their corresponding
parent function values. The specific criteria are presented in Figure 3.2 and discussed
in more detail in §3.1 and §3.2.

In the case of a successful iteration (Step 4), the primary difference between APPS
(Figure 3.1) and PPS (Figure 2.1) is the step length update. In both cases, the step
length is updated to be the same as the step length that produced yk. In PPS, this
is simply ∆k. However, in APPS, the step used to produce yk is “remembered” as
part of the extra bookkeeping described above. All pk+1 step lengths are reset to the
larger of either this “remembered” step length or the quantity ∆min. If ∆min ≤ ∆tol,
this has no affect in practice, but it is important in the convergence theory (where
it cannot be less than ∆tol since ∆tol = 0). A successful iteration clears the active
directions, so Ak+1 is reset to the empty set. At this point, the evaluation queue needs
to be pruned to prevent it from growing too large; such a measure has analytical (see
Condition 9) as well as practical benefits. Any or all points may be pruned.

In the case of an unsuccessful iteration (Step 5 in Figure 3.1), the step lengths are
reduced individually depending on the trial points in Yk. Specifically, each evaluated
trial point is considered, and if the trial point’s parent is not xk, then it is discarded.
(Recall that keeping track of the parent is part of the bookkeeping described above.)
Otherwise, the corresponding step is reduced by a factor of two. The correct step is
identified by the direction index that was used to generate the trial point (also part
of the bookkeeping). Termination is essentially the same, except that there are now
pk+1 steps, all of which must be less than the specified tolerance before the algorithm
terminates.

3.1. APPS with Simple Decrease. In the simple decrease version of APPS,
Conditions 1–3 are imposed as in the synchronous version discussed in §2.1. Condi-
tion 6 is replaced with Condition 7 (see §3.3); the new condition handles the multiple,

12

Initialization.

Set x0 be some initial guess.
Set D0 =

{
d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Let ∆tol > 0 be the step-length convergence tolerance.
Set ∆(i)

0 = ∆0 > ∆tol for i = 1, . . . , p0 to be the initial step lengths.
Let Γmin ∈ Z with Γmin ≥ 0. Set ∆min = 2−Γmin∆0.
Set A0 = ∅. Let qmax be the evaluation queue size.

Iteration. For k = 0, 1, . . .

Step 1. Generate a (possibly empty) set of trial points

Xk =
{

xk + ∆̃(i)
k d

(i)
k : 1 ≤ i ≤ pk, i 6∈ Ak, and ∆̃(i)

k > ∆tol

}
.

Then, send the set of points Xk to the evaluation queue.
Set Ak+1 = {i : ∆̃(i)

k > ∆tol}.

Step 2. Collect a non-empty set Yk of evaluated trial points.

Step 3. Let Ȳk ⊆ Yk be the subset of trial points that satisfy the sufficient
decrease condition (see Figure 3.2). If there exists a trial point
yk ∈ Ȳk such that f(yk) < f(xk), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful.

– Set xk+1 = yk.

– Choose a new Dk+1 =
{

d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Let ∆̂ denote the “remembered” step length for yk.

– Set ∆(i)
k+1 = max{∆̂,∆min} for i = 1, . . . , pk+1.

– Reset Ak+1 = ∅.
– Prune the evaluation queue to (qmax − pk+1) or fewer entries.

– Go to Step 1.

Step 5. The iteration is unsuccessful.

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Let Ik denote the corresponding “remembered” direction indices
of trial points in Yk whose “remembered” parent is xk.

– Set ∆(i)
k+1 =

{
1
2∆(i)

k , if i ∈ Ik

∆(i)
k , if i 6∈ Ik

for i = 1, . . . , pk+1.

– Update Ak+1 ← Ak+1 \ Ik.

– If ∆(i)
k+1 < ∆tol for i = 1, . . . , pk+1, terminate. Else, goto Step 1.

Fig. 3.1. Manager-Worker APPS Algorithm

13

For each y ∈ Yk

– Let f(ŷ) denote the “remembered” function value of the parent of y.

– Let ∆̂ denote the “remembered” step length for y.

– Define the set Ȳk =
{

y ∈ Yk : f(y) < f(ŷ)− ρ(∆̂)
}

.

Fig. 3.2. Sufficient Decrease Condition for Step 3 in APPS (Figure 3.1)

possibly different step lengths.
In the simple decrease case, we can assume, without loss of generality, that Ȳk =

Yk in Step 3. The reasoning is that it cannot be the case that a trial point y satisfies
f(y) < f(xk) but not f(y) < f(ŷ) (where ŷ is the parent of y). Since ŷ is a previous
“best point”, it must be true that f(xk) ≤ f(ŷ).

3.2. APPS with Sufficient Decrease. In the sufficient decrease version of
APPS, Conditions 1, 2, 4, and 7 (the replacement for Condition 6) are enforced.

Implementing sufficient decrease in an asynchronous environment adds a layer
of difficulty because the sufficiency condition is with respect to the parent of the
trial point. There is no assurance that xk is the parent of the trial point, as in the
synchronous case. Consequently, in the asynchronous case, determining whether or
not an evaluated trial point is a new “best point” becomes a two step process. First,
the point is checked to see if it satisfies a sufficient decrease condition with respect
to its parent’s function value (see Figure 3.2). Second, it is assessed to see if simple
decrease with respect to the current xk is satisfied.

For example, consider an evaluated trial point y at iteration k. Let f(ŷ) be the
“remembered” parent function value, and let ∆̂ be the “remembered” step length. In
order to be a candidate for new “best point”, y must satisfy

f(y) < min{f(ŷ)− ρ(∆̂), f(xk)}.

3.3. APPS with Bound Constraints. Bound constraints are handled essen-
tially the same as before. Now, however, Condition 6 must be modified to reflect the
pk independent step lengths. Condition 7 results.

Condition 7. If xk + ∆(i)
k d

(i)
k ∈ Ω, then ∆̃(i)

k = ∆(i)
k .

Similarly, the step calculations in (2.1) and (2.2) need to be modified. The fol-
lowing choice is suitable for either simple or sufficient decrease [11]:

∆̃(i)
k =

{
∆(i)

k , if xk + ∆(i)
k d

(i)
k ∈ Ω,

0, otherwise.
(3.1)

In the sufficient decrease case, taking the longest possible feasible step is an alternative
[11]. Define ∆̃(i)

k as the solution to

max ∆̃
subject to 0 ≤ ∆̃ ≤ ∆(i)

k ,

xk + ∆̃ d
(i)
k ∈ Ω.

(3.2)

14

4. An illustrated example of APPS. A two-dimensional example is presented
in Figures 4.1–4.2. The contour plot of the objective function uses darker shading to
indicate lower function values. Each figure represents the state of the algorithm at an
iteration. The square denotes the best point (i.e., xk) at that iteration, and the circles
denote points in the evaluation queue after Step 1 is completed. The lines denote the
search directions. For simplicity, we use the same set of search directions throughout:
Dk = {e1, e2,−e1,−e2}. The points are labeled with letters, and the algorithm is
initialized with the starting point x0 = a and an initial step length of ∆0 = 1.

Before we continue, it is important to note the following. At each iteration,
the set of evaluated trial points returned in Step 2 could be any non-empty subset
of points in the evaluation queue — the choice of this subset is not controlled by
the APPS algorithm. Thus, the set Yk at each iteration can be interpreted as the
result of random chance. (In truth, we have crafted the selection in this example to
demonstrate certain features of the algorithm.) The algorithm makes no assumption
that the points in the evaluation queue finish being evaluated in any particular order.

A couple of algorithmic choices also influence our example. In Step 2, we assume
that no sufficient decrease criteria is employed (i.e., ρ ≡ 0) so that Ȳk ≡ Yk for all
k. In Step 4, we assume that qmax = 6.

Iteration 0 illustrates an unsuccessful iteration. We assume that only two evalu-
ations (b and e) are returned in Step 2. Neither b nor e improve the function value,
so the iteration is unsuccessful. The parent of both b and e is x0 = a and their cor-
responding direction indices are 0 and 3, thus I0 = {0, 3} in Step 5. The step lengths
corresponding to those directions are reduced by a factor of 2. Note that points c and
d remain in the evaluation queue.

Iteration 1 illustrates a successful iteration. In Step 1, this iteration only generates
two new trial points (f and g) because Directions 1 and 2 are already active (i.e.,
A1 = {1, 2}). In Step 2, we assume points f and g are returned. Since f reduces the
function value, this iteration is successful. All step lengths for the next iteration are
reset to the length of the step length that produced f (i.e., ∆̂ = 1

2). No pruning of
the queue is necessary.

Iteration 2 illustrates “disconnected” points in the evaluation queue and a suc-
cessful iteration that results from one of these disconnected points. Two points remain
in the evaluation queue, and four new trial points are generated and added in Step 1.
Because x2 6= x1, the older points in the queue are no longer connected to the current
best point and so are referred to as disconnected. In Step 2, we assume the evaluation
for the point c is finally returned (along with j and h) and results in another successful
step. All step lengths for the next iteration are set to the step length that produced
c (i.e., ∆̂ = 1), and this step is from Iteration 0. This time, the evaluation queue is
pruned by removing the oldest point, d.

Iteration 3 illustrates two points with improved function values returning simul-
taneously (i and l). As with synchronous parallel pattern search, we will assume that
we take the best one, though this is not strictly necessary in terms of the theory.

Iteration 4 illustrates an unsuccessful iteration that results in no changes and
thus no new trial points in the next iteration. Here, points k and n finish their
evaluations and the result is an unsuccessful iteration. However, since both points are
disconnected (i.e., neither has l as its parent), no step lengths are reduced in Step 5.

At the beginning of Iteration 5, no new trial points are generated, and four points
remain in the evaluation queue. The process continues from there, marching toward
a local minimizer.

15

a b

c

d

e

Iteration 0
x0 = a
∆(0)

0 = ∆(1)
0 = ∆(2)

0 = ∆(3)
0 = 1

A0 = ∅
X0 = {b, c,d, e} Queue = {b, c,d, e}
Y0 = {b, e} Queue = {c,d}
Unsuccessful (I0 = {0, 3})

a

c

d f

g

Iteration 1
x1 = a
∆(0)

1 = ∆(3)
1 = 1

2 ,∆(1)
1 = ∆(2)

1 = 1
A1 = {1, 2}
X1 = {f, g} Queue = {c,d, f, g}
Y1 = {f, g} Queue = {c,d}
Successful (f) Pruned Queue = {c,d}

c

d f h

i

j

k

Iteration 2
x2 = f
∆(0)

2 = ∆(1)
2 = ∆(2)

2 = ∆(3)
2 = 1

2
A2 = ∅
X2 = {h, i, j, k} Queue = {c,d,h, i, j, k}
Y2 = {c, j,h} Queue = {d, i, k}
Successful (c) Pruned Queue = {i, k}

Fig. 4.1. Example APPS Iterations: Part 1

5. APPS Convergence Theory. We develop convergence theory for APPS,
concluding with results analogous to Theorems 2.1 and 2.2. The analysis borrows
heavily from [12, 10, 11]. We begin in §5.1 by determining bounds on ‖∇f(xk) ‖ and
χ(xk) in terms of the step lengths. Next in §5.2, we present some results showing that
a subsequence of the step lengths go to zero. Finally, in §5.3, we give the convergence
results.

16

i

k

c l

m

n

o

Iteration 3
x3 = c
∆(0)

3 = ∆(1)
3 = ∆(2)

3 = ∆(3)
3 = 1

A3 = ∅
X3 = {l,m,n, o} Queue = {i, k, l,m,n, o}
Y3 = {i, l,m, o} Queue = {k,n}
Successful (l) Pruned Queue = {k,n}

k

n l p

q

r

s

Iteration 4
x4 = l
∆(0)

4 = ∆(1)
4 = ∆(2)

4 = ∆(3)
4 = 1

A4 = ∅
X4 = {p, q, r, s} Queue = {k,n,p, q, r, s}
Y4 = {k,n} Queue = {p, q, r, s}
Unsuccessful (I4 = ∅)

l p

q

r

s

Iteration 5
x5 = l
∆(0)

5 = ∆(1)
5 = ∆(2)

5 = ∆(3)
5 = 1

A5 = {0, 1, 2, 3}
X5 = ∅ Queue = {p, q, r, s}
. . .

Fig. 4.2. Example APPS Iterations: Part 2

It is implicitly assumed in the discussion of the asymptotic behavior that ∆tol = 0
in Figure 3.1.

We make explicit the bound on the number of search directions in Dk in Condi-
tion 8. This is an implicit assumption in PPS.

17

Condition 8. There exists pmax, independent of k, such that for all k,
pk ≤ pmax.

We also need to ensure that a trial point cannot languish in the evaluation queue
indefinitely. This is also an implicit assumption in PPS.

Condition 9. If a trial point is submitted to the evaluation queue at
iteration k, either its evaluation will have completed or it will have been
pruned from the evaluation queue by iteration k + η.

Condition 9 is not saying that every function evaluation requires η iterations;
instead, this is an upper bound on the number of iterations. In fact, the value of η may
be quite large. A sticky point here is that an iteration does not necessarily correspond
to a unit of time, so it is difficult to specify a maximum number of iterations for a
function evaluation. However, if we assume that there is a unit of time associated with
an iteration, this assumption can be enforced as follows. Without loss of generality, let
the minimum iteration time correspond to 1 time unit. Now, suppose that there are w
workers available for computing function evaluations and that the maximum number
of time units required to compute a single function evaluation on a single worker is
φ. Next, assume that trial points submitted to the evaluation queue are sent to the
workers in order (although there is no assumption that the function evaluations finish
in order). Finally, assume the maximum queue size is qmax ≥ pmax and is always
pruned to a size no greater than (qmax − pk+1) for any successful iteration. Then, η
can explicitly be computed as

η = φ
⌈qmax

w

⌉
.

From an implementation point of view, the critical requirement is that the evaluation
queue cannot be allowed to grow too large, and so the pruning in Step 4 is necessary
for enforcing Condition 9.

5.1. Bounding the Measure of Stationarity. Theorem 5.1, below, applies
to the unconstrained case and bounds the norm of the gradient as a function of the
step length. This result and its proof are nearly identical to Theorem 3.3 in [10]. The
difference is identifying those iterations for which such a bound can be shown. The
necessary condition is that there must have been at least one contraction in every
direction since the last successful iteration.

Theorem 5.1. Consider the optimization problem (1.1), satisfying Assump-
tions 3–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2, either 3 or
4, and 7. For every k such that

∆̂k ≡ max
1≤i≤pk

{
2∆(i)

k

}
≤ ∆min,(5.1)

we have

‖∇f(xk) ‖ ≤ 1
cmin

[
M∆̂kβmax +

ρ(∆̂k)
∆̂kβmin

]
.(5.2)

18

Proof. By hypothesis (5.1), ∆(i)
k < ∆min for all i = 1, . . . , pk. This implies that

there has been at least one contraction along each direction since that last successful
iteration, so

0 ≤ f(xk + 2∆(i)
k d

(i)
k)− f(xk) + ρ(2∆(i)

k) for i = 1, . . . , pk.(5.3)

The value of 2∆(i)
k comes in because the current value of ∆(i)

k is half of that for which
the contraction was done. Also note that it is assumed ∆̃(i)

k = ∆(i)
k by Condition 7.

Since, by hypothesis, Condition 1 is satisfied, there exists an ı̄ ∈ {1, . . . , pk} such
that

cmin ‖∇f(xk) ‖ ‖ d(ı̄)
k ‖ ≤ −∇f(xk)T d

(ı̄)
k .(5.4)

Employing Assumption 3, the mean value theorem can be applied to (5.3) for
i = ı̄ to conclude that there exists ᾱ ∈ [0, 1] such that

f(xk + 2∆(ı̄)
k d

(ı̄)
k)− f(xk) = 2∆(ı̄)

k ∇f(xk + ᾱ2∆(ı̄)
k d

(ı̄)
k)T d

(ı̄)
k .(5.5)

Combining (5.3) and (5.5), dividing through by 2∆(ı̄)
k , and subtracting∇f(xk)T d

(ı̄)
k

from both sides yields

−∇f(xk)T d
(ı̄)
k ≤

(
∇f(xk + ᾱ 2∆(ı̄)

k d
(ı̄)
k)−∇f(xk)

)T

d
(ı̄)
k +

ρ(2∆(ı̄)
k)

2∆(ı̄)
k

≤ ‖∇f(xk + ᾱ 2∆(ı̄)
k d

(ı̄)
k)−∇f(xk) ‖ ‖ d

(ı̄)
k ‖+

ρ(2∆(ı̄)
k)

2∆(ı̄)
k

.

Using (5.4) to replace the left hand side and dividing through by ‖ d
(ı̄)
k ‖, we now

have

cmin ‖∇f(xk) ‖ ≤ ‖∇f(xk + ᾱ2∆(ı̄)
k d

(ı̄)
k)−∇f(xk) ‖+

1

‖ d
(ı̄)
k ‖

ρ(2∆(ı̄)
k)

2∆(ı̄)
k

.(5.6)

Since∇f is Lipschitz (Assumption 4), the norm of any search direction is bounded
(Condition 2), and ᾱ ∈ [0, 1], it follows that

‖∇f(xk + ᾱ2∆(ı̄)
k d

(ı̄)
k)−∇f(xk) ‖ ≤M

(
ᾱ 2∆(ı̄)

k ‖ d
(ı̄)
k ‖

)
≤M∆̂kβmax.(5.7)

Now, either ρ is identically zero (Condition 3) or ρ(t)/t is monotonically decreasing
as t ↓ 0 (Condition 4). In either case,

1

‖ d
(ı̄)
k ‖

ρ(2∆(ı̄)
k)

2∆(ı̄)
k

≤ 1
βmin

ρ(∆̂k)
∆̂k

.(5.8)

Note that the lower bound in Condition 2 is also employed in the above inequality.
Finally, combining (5.6), (5.7), and (5.8) and dividing by cmin yields (5.2). Hence,

the claim.
A similar result can be proved in the constrained case that is nearly identical to

Theorem 4.4 in [11]. The same adaptations are used as in the unconstrained case, so
the proof is left to the reader.

19

Theorem 5.2. Consider the optimization problem (1.2), satisfying Assumptions
1, 3, and 4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4,
5, and 7. Let ε? > 0 be given. Then there exists a constant c such that, for every k
that satisfies,

∆̂k ≡ max
1≤i≤pk

{
2∆(i)

k

}
≤ max

{
∆min,

ε?

βmax

}
,(5.9)

we have

χ(xk) ≤ c

[
M∆̂kβmax +

ρ(∆̂k)
∆̂kβmin

]
.(5.10)

5.2. Globalization. Before we proceed to the globalization results, it is neces-
sary to introduce some additional notation and assumptions.

We define Γ(i)
k for all k and i = 1, . . . , pk as

Γ(i)
k = − log2

(
∆(i)

k

∆0

)
.(5.11)

We can conclude that Γ(i)
k ∈ Z because any ∆(i)

k is an integral power of 2 times the
initial guess, i.e.,

∆(i)
k+1 = 2−Γ

(i)
k ∆0.

The following Lemma 5.3 applies to APPS with a sufficient decrease condition.
Because xk is not necessarily the parent of xk+1, the proof is somewhat different than
its synchronous analogue, Theorem 3.4 in [10].

Additional notation is required for the proof. For any successful iteration k, a
set of ancestors may be constructed for the point xk+1. Let Πk denote the iteration
indices of the ancestors of xk+1 as well as (k + 1) itself, and let `k denote the number
of ancestors. (The size of Πk will be `k +1). To illustrate, consider again the example
of §4. Iterations 1,2, and 3 are successful and yield the following ancestor sets:

Π1 = {0, 2}, `1 = 1
Π2 = {0, 3}, `2 = 1
Π3 = {0, 1, 4} `3 = 2.

It is important to note that 0 is necessarily in every set Πk since x0 is an ancestor to
every point.

Lemma 5.3. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumption 2. Let the APPS algorithm in Figure 3.1 satisfy Conditions 4, 8, and 9.
Then there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ(j)
k = +∞.

Proof. Suppose the lemma is false. Then there exists Γ? such that Γ(i)
k < Γ? for

all k and i = 1, . . . , pk. Consequently, the step lengths are bounded below:

∆(i)
k ≥ ∆? = 2−Γ?∆0, for all k and i = 1, . . . , pk.(5.12)

20

Then, by Condition 4, the forcing term is bounded below as well:

ρ(∆(i)
k) ≥ ρ? = ρ(∆?), for all k and i = 1, . . . , pk.(5.13)

Suppose k is a successful iteration, and let Πk = {i1, i2, . . . , i`k+1}. Since each
child-parent pair satisfies the sufficient decrease condition, we can apply a telescoping
sum argument and (5.13) to obtain

f(xk+1)− f(x0) =
`k∑

j=1

{
f
(
xij+1

)
− f

(
xij

)}
≥ `k ρ?.(5.14)

Another consequence of the lower bound on the step lengths in (5.12) is that each
parent can only have a finite number of children. Specifically, a parent can have no
more than c = pmax (Γ? + 1) children where the bound pmax comes from Condition 8.
Thus, if iteration k is successful, xk+1 must have at least dk/ce ancestors. Combining
this information with (5.14) yields

f(xk+1) ≥ k
(ρ?

c

)
+ f(x0).

Let S denote the subsequence of successful iterates. By Condition 9, the maximum
number of iterations to evaluate a single trial point is bounded. This coupled with
the method by which step lengths are updated implies that there must be infinitely
many successful steps, i.e., S is infinite. Thus,

lim
k∈S

f(xk+1) ≥ lim
k∈S

k
(ρ?

c

)
+ f(x0) = +∞.

This contradicts Assumption 2. Hence, the claim.
Before we can establish a result analogous to Lemma 5.3 for the simple decrease

case, we first state a result regarding the structure of the iterates. It is a standard
result, so no proof is provided here; see instead, e.g., [10].

Proposition 5.4 ([12]). Consider the optimization problem (1.1) or (1.2). Con-
sider the APPS algorithm in Figure 3.1 satisfying Condition 3. Let Γ > 0 be a con-
stant. Then, for any k with

Γ ≤ Γ(i)
j for all j ≤ k, i = 1, . . . , pj

the following holds:

xk+1 = x0 + 2−Γ ∆0

p∑
i=1

ζk(i,Γ) d(i),(5.15)

where ζk(i,Γ) ∈ Z for each i = 1, . . . , p and k = 0, 1, 2,
Given this result, the fact that the ζk(i,Γ) are integral, and the set G is as

described in Condition 3, all iterates lie on on the lattice

M(x0,∆0,G,Γ) =

{
x0 + 2−Γ∆0

p∑
i=1

ζ(i)d(i) : i ∈ Z

}

We can now present our result.
21

Lemma 5.5. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumption 1. Let the APPS algorithm in Figure 3.1 satisfy Conditions 3 and 9. Then,
there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ(j)
k = +∞.

Proof. Suppose not. Then there exists Γ? such that Γ(i)
k < Γ? for all k and i =

1, . . . , pk. By Proposition 5.4, every iterate must lie on the lattice M(x0,∆0,G,Λ?).
On the other hand, by Assumption 1, every iterate must lie in the bounded set Lf (x0).
The intersection of M(x0,∆0,G,Γ?) and Lf (x0) is finite, so every successful iterate
is drawn from a finite set. Next, observe that a successful point can only be successful
once because Step 3 in Figure 3.1 requires strict improvement. Therefore, there can
be only finitely many successful iterates; let k̂ denote the last successful iterate.

After iteration k̂, the set of search directions does not change. Further, by Con-
dition 9, there is a contraction in the step length along each direction at least once
per η iterations. Thus,

lim
k→∞

max
1≤i≤pk

{
∆(i)

k

}
= 0.

So, necessarily, min{Γ(i)
k } → +∞. This contradicts our original assumption. Hence,

the claim.
Both Lemma 5.3 and Lemma 5.5 lead to the following general result regarding

the step lengths. Additional notation is required for this proof. Define

Γ̃(i)
k = Γ(i)

k − Γmin.

This quantity is equal to the number of contractions required to go from ∆min to ∆(i)
k .

Theorem 5.6. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumptions 1–2. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or
4, 8, and 9. Then, there exists a set K ⊂ {1, 2, . . .} such that

lim
k∈K

{
max

1≤i≤pk

∆(i)
k

}
= 0.

Proof. By either Lemma 5.3 (using Assumption 2 and Conditions 4, 8, and 9) or
Lemma 5.5 (using Assumption 1 and Conditions 3 and 9), we have that there exists
an index j and set K such that

lim
k∈K

Γ(j)
k = +∞.

Without loss of generality, assume that

Γ(j)
k > η (Γmin + 1) for all k ∈ K,(5.16)

where η is as defined in Condition 9.
Then if k ∈ K, by (5.16), Γ̃(i)

k > 0 and there has not been a success for at least
Γ̃(j)

k iterations. On the other hand, by (5.16), bΓ̃(j)
k /ηc > 0 and there has been at

least bΓ̃(j)
k /ηc contractions in all other directions. Thus,

Γ̃(i)
k ≥ bΓ̃

(j)
k /ηc for k ∈ K, 1,≤ i ≤ pk, i 6= j.

22

Thus,

lim
k∈K

{
min

1≤i≤pk

Γ(i)
k

}
= +∞.

Hence, the claim.

5.3. Convergence Results. Using the machinery built in §5.1–5.2, results fol-
lowing Theorems 2.1 and 2.2 are immediate.

Theorem 5.7. Consider the optimization problem (1.1), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2, either 3 or
4, 7, 8, 9. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 5.8. Consider the optimization problem (1.2), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4, 5,
7, 8, 9. Then

lim inf
k→+∞

χ(xk) = 0.

6. Conclusions. We have presented a new version of APPS based on a manager-
worker paradigm. This algorithm encapsulates either simple or sufficient decrease as
well as the ability to handle bound constraints. A nice feature of this version of APPS
is that it closely mirrors PPS (at least as described here).

In fact, neither PPS nor APPS has been presented in its most general form. For
example, these algorithms handle updating the step lengths in a particular way. At
unsuccessful iterations, the contraction factor in Step 5 is hard-wired to 1

2 ; in fact, this
could be any fixed value. Similarly, an expansion factor could be used on successful
iterations in Step 4. In both cases, these terms could be adaptive (i.e., different at
each iteration). We also assume that the search directions are fixed between successful
iterations. This is not required for PPS; however, we have presented it that way
because it is required for APPS.

Likewise, some of the assumptions and conditions employed in the convergence
analysis can be relaxed. We need not assume that the gradient is Lipschitz (Assump-
tion 4); instead, continuous differentiability is sufficient (see the note at the end of
§3.6 in [10]). Part (d) in Condition 3 can be changed to say that either ρ is identically
zero or it satisfies Condition 4; in other words, the argument based on lattice structure
is independent of the decrease condition. Part (e) in Condition 3 can be generalized
to say that the pseudo step can be anything of the form 2−Γ∆0 for Γ ∈ Z. Part (b)
in Condition 4 is more restrictive than necessary for PPS (which only needs that ρ(t)
monotonically decreases), but this more restrictive assumption is needed by APPS.
Condition 5 can be weakened, but the resulting condition is much more complex (see
Condition 1 in [11]).

The convergence theory borrows heavily from the analysis of GSS in [10, 11] as
well as the previous version of APPS [12]. The convergence results presented in §5 are
weak convergence results because it is possible that only a subsequence of the iterates
will converge to a minimizer. Although strong convergence results are possible in the
synchronous case [10], it is unclear whether or not such assurances can be made for

23

the asynchronous algorithm because strong convergence requires that the algorithm
always take the best direction at each iteration. Local convergence results exist for
PPS [10] but are left as a topic for future study for APPS.

One objective of the redesign of APPS is to enable easier incorporation of methods
for handling linear constraints. In that case, the search directions must conform to the
nearby boundary [16, 11]. Thus, the ability to change the search directions in Step 4
makes this relatively simple. Incorporating changing directions in the peer-to-peer
version would be substantially more complex.

This version of APPS is implemented in APPSPACK 4.0 [9], and numerical results
on a set of problems in groundwater flow are presented in [5].

Acknowledgments. I am very grateful to my collaborators on APPS and GSS
who have inspired many of the ideas in this paper: Virginia Torczon, Michael Lewis,
Patty Hough, and Genetha Gray. Thanks also to Genetha Gray and Virginia Torczon
for reading earlier versions of this manuscript and offering many helpful comments.

Appendix A. Evolution of Peer-to-Peer to Manager-Worker. The switch
from the peer-to-peer version [8] to manager-worker was gradual and largely the result
of user requests. As mentioned in the introduction, peer-to-peer APPS is based on
the concept of what are called agents. Each agent handles a single direction (and up
to one corresponding trial point) and launches its own workers to actually execute the
function evaluation. Thus, there is one agent per search direction and the number
of search directions is necessarily fixed. The working assumption is that there is one
direction per processor and one processor per machine.

The first step in the evolution to the manager-worker design is motivated by
multiprocessor (i.e., SMP) machines. On a cluster of machines that each have, say,
four processors, it is more efficient to have one agent (as opposed to four) for every
four search directions. The peer-to-peer design remained intact, but a single agent
could handle multiple search directions. The directions sharing a common agent also
shared one common “best point.” In fact, this is equivalent to the original peer-to-
peer model with instantaneous communication between appropriate subsets of the
agents. Once agents were designed and implemented to handle multiple directions,
having one agent handle all directions was trivial.

The difference between this first manager-worker concept and the algorithm de-
scribed here is the handling of the search directions. Having a fixed set of search
directions is fairly crucial to the peer-to-peer design. In particular, it is implemented
so that there is at most one function evaluation per search direction at any given time.
The “disconnected” points described in §4 cannot exist. Though it would certainly
be possible to design a peer-to-peer APPS that allows the search directions to change
as the optimization progresses, it is much simpler to do this in a manager-worker
context.

REFERENCES

[1] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM Journal on
Optimization, 13 (2003), pp. 889–903.

[2] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, MPS-SIAM Series on
Optimization 1, SIAM, 2000.

[3] J. E. Dennis and V. Torczon, Managing approximation models in optimization, in Multidis-
ciplinary Design Optimization: State of the Art, N. M. Alexandrov and M. Y. Hussaini,
eds., SIAM, Philadelphia, 1997, pp. 330–347.

24

[4] G. E. Fagg and J. Dongarra, FT–MPI: Fault tolerant mpi, supporting dynamic applications
in a dynamic world, in Proceedings of the 7th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture
Notes In Computer Science, London, UK, 2000, Springer-Verlag, pp. 346–353.

[5] K. R. Fowler, J. P. Reese, C. E. Kees, D. J. E. Dennis, C. T. Kelley, C. T. Miller,
C. Audet, A. J. Booker, G. Couture, R. W. Darwin, M. W. Farthing, D. E. Finkel,
J. M. Gablonsky, G. Gray, and T. G. Kolda, A comparison of optimization methods
for problems involving flow and transport phenomena in saturated subsurface systems. in
preparation.

[6] U. M. Garćıa-Palomares and J. F. Rodŕıguez, New sequential and parallel derivative-free
algorithms for unconstrained minimization, SIAM Journal on Optimization, 13 (2002),
pp. 79–96.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam, PVM:
Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Computing,
MIT Press, Cambridge, Massachusetts, 1994.

[8] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for
nonlinear optimization, SIAM Journal on Scientific Computing, 23 (2001), pp. 134–156.

[9] T. G. Kolda et al., Appspack version 4.0. http://software.sandia.gov/appspack/, 2004.
[10] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives

on some classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.
[11] , Stationarity results for generating set search for linearly constrained optimization, Tech.

Rep. SAND2003–8550, Sandia National Laboratories, Livermore, California, October 2003.
[12] T. G. Kolda and V. J. Torczon, On the convergence of asynchronous parallel pattern search,

Tech. Rep. SAND2001–8696, Sandia National Laboratories, Livermore, California, Febru-
ary 2002.

[13] , Understanding asynchronous parallel pattern search, in High Performance Algorithms
and Software for Nonlinear Optimization, G. Di Pillo and A. Murli, eds., vol. 82 of Applied
Optimization, Kluwer Academic Publishers, Boston, 2003, pp. 316–335.

[14] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algorithms,
Tech. Rep. 96–71, Institute for Computer Applications in Science and Engineering, Mail
Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681–2199, 1996.

[15] , Pattern search algorithms for bound constrained minimization, SIAM Journal on Op-
timization, 9 (1999), pp. 1082–1099.

[16] , Pattern search methods for linearly constrained minimization, SIAM Journal on Opti-
mization, 10 (2000), pp. 917–941.

[17] R. M. Lewis, V. Torczon, and M. W. Trosset, Why pattern search works, Optima, 59
(1998), pp. 1–7. Also available as ICASE Technical Report 98–57, Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, Vir-
ginia.

[18] S. Lucidi and M. Sciandrone, A derivative-free algorithm for bound constrained optimization,
Computational Optimization and Applications, 21 (2002), pp. 119–142.

[19] , On the global convergence of derivative-free methods for unconstrained optimization,
SIAM Journal on Optimization, 13 (2002), pp. 97–116.

[20] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete
Reference, Volume 1, The MPI Core, 2nd Edition, MIT Press, Cambridge, Massachusetts,
1998.

[21] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on Optimization,
7 (1997), pp. 1–25.

25

